SEQUENCE LISTING

<110> Miller, Barbara
 Osmani, Stephen
 Clawson, Gary
 Zhang, Min-Ying
 Norris, James

<220>

<223> Oligonucleotide

```
Norris, James
<120> Use of Human Homolog Of A Nuclear Migration Gene For Treatment And Diagnosis Of Cance
<130> PSU-0016
<140> 09/623,568
<141> 2001-03-23
<150> 60/076,885
<151> 1998-03-05
<150> PCT US99/04996
<151> 1999-03-05
<160> 16
<170> PatentIn version 3.1
<210> 1
<211>
       14
<212> PRT
<213> artificial Sequence
<220>
<223> Peptide
<400> 1
Gly Cys Met Val Glu Lys Met Met Tyr Asp Gln Arg Gln Lys
<210> 2
<211> 15
<212> PRT
<213> artificial Sequence
<220>
<223> Peptide
<400> 2
Asn Gly Ser Leu Asp Ser Pro Gly Lys Gln Asp Thr Glu Glu Asp
<210> 3
<211> 24
<212> DNA
<213> artificial Sequence
<220>
<223> Oligonucleotide
<400> 3
                                                                        24
ttctgttcgt ctgaagttgg cagc
<210>
<211>
      24
<211> 24
<212> DNA
<213> artificial Sequence
```

<400>	4	
caatga	aagtg aaggtggagg agag	24
<210>	5	
<211>		
<212>		
<213>	artificial Sequence	
<220>		
<223>	Oligonyalectide	
\2237	Oligonucleotide	
<400>	5	
aaggta	accaa gatggactcc ccagggaagc aggatact	38
<210>	6	
<211>		
<212>		
<213>		
<220>		
<223>	Oligonucleotide	
<400>	6	
	o ccaa gaaagttggg tggttgcagc tc	32
aayyat	cceaa gaaagiiggg iggiigeage ie	32
<210>	7	
<211>	20	
<212>	DNA	
<213>	artificial Sequence	
<220>		
<223>	Oliganusleatide	
\2237	Oligonucleotide	
<400>	7	
	cgga ggttcgaaga	20
J J .		
<210>	8	
<211>		
<212>		
<213>	artificial Sequence	
<220>		
<223>	Oligonucleotide	
<400>	8	
accaac	ctaag aacggccatg	20
<210>	9	
<211>		
<213>		
\L13/	arctitotat peducuce	
<220>		
<223>	Oligonucleotide	
<400>	9	
agcaac	catgo ogtogaacog otoc	24
<210>	10	
<211>		
<212>		
<213>		
<220>	Olimenus la abida	
<223>	Oligonucleotide	

Met Ala Gln Gln His Glu Gly Gly Val Gln Glu Leu Val Asn Thr Phe $20 \hspace{1cm} 25 \hspace{1cm} 30$

Phe Ser Phe Leu Arg Arg Lys Thr Asp Phe Phe Ile Gly Glu Glu 35 40 45

Gly	Met 50	Ala	Glu	Lys	Leu	Ile 55	Thr	Gln	Thr	Phe	Ser 60	His	His	Asn	Gln
Leu 65	Ala	Gln	Lys	Thr	Arg 70	Arg	Glu	Lys	Arg	Ala 75	Arg	Gln	Glu	Ala	Glu 80
Arg	Arg	Glu	Lys	Ala 85	Glu	Arg	Ala	Ala	Arg 90	Leu	Ala	Lys	Glu	Ala 95	Lys
Ser	Glu	Thr	Ser 100	Gly	Pro	Gln	Ile	Lys 105	Glu	Leu	Thr	Asp	Glu 110	Glu	Ala
Glu	Arg	Leu 115	Gln	Leu	Glu	Ile	Asp 120	Gln	Lys	Lys	Asp	Ala 125	Glu	Asn	His
Glu	Ala 130	Gln	Leu	Lys	Asn	Gly 135	Ser	Leu	Asp	Ser	Pro 140	Gly	Lys	Gln	Asp
Thr 145	Glu	Glu	Asp	Glu	Glu 150	Glu	Asp	Glu	Lys	Asp 155	Lys	Gly	Lys	Leu	Lys 160
Pro	Asn	Leu	Gly	Asn 165	Gly	Ala	Asp	Leu	Pro 170	Asn	Tyr	Arg	Trp	Thr 175	Gln
Thr	Leu	Ser	Glu 180	Leu	Asp	Leu	Ala	Val 185	Pro	Phe	Cys	Val	Asn 190	Phe	Arg
Leu	Lys	Gly 195	Lys	Asp	Met	Val	Val 200	Asp	Ile	Gln	Arg	Arg 205	His	Leu	Arg
Val	Gly 210	Leu	Lys	Gly	Gln	Pro 215	Ala	Ile	Ile	Asp	Gly 220	Glu	Leu	Tyr	Asn
Glu 225	Val	Lys	Val	Glu	Glu 230	Ser	Ser	Trp	Leu	Ile 235	Glu	Asp	Gly	Lys	Val 240
Val	Thr	Val	His	Leu 245	Glu	Lys	Ile	Asn	Lys 250	Met	Glu	Trp	Trp	Ser 255	Arg
Leu	Val	Ser	Ser 260	Asp	Pro	Glu	Ile	Asn 265	Thr	Lys	Lys	Ile	Asn 270	Pro	Glu
Asn	Ser	Lys 275	Leu	Ser	Asp	Leu	Asp 280	Ser	Glu	Thr	Arg	Ser 285	Met	Val	Glu
Lys	Met 290	Met	туг	Asp	Gln	Arg 295	Gln	Lys	Ser	Met	Gly 300	Leu	Pro	Thr	Ser
Asp 305	Glu	Gln	Lys	Lys	Gln 310	Glu	Ile	Leu	Lys	Lys 315	Phe	Met	Asp	Gln	His 320
Pro	Glu	Met	Asp	Phe 325	Ser	Lys	Ala	Lys	Phe 330	Asn					

<210> 13 <211> 332 <212> PRT

<213> Rattus rattus

∢400> 13

Met Gly Glu Glu Glu Glu Arg Phe Asp Gly Met Leu Leu Ala

Met Ala Gln Gln His Glu Gly Gly Val Gln Glu Leu Val Asn Thr Phe

Phe Ser Phe Leu Arg Arg Lys Thr Asp Phe Phe Ile Gly Glu Glu 35 40 45

Gly Met Ala Glu Lys Leu Ile Thr Gln Thr Phe Asn His His Asn Gln

Leu Ala Gln Lys Ala Arg Arg Glu Lys Arg Ala Arg Gln Glu Thr Glu

Arg Arg Glu Lys Ala Glu Arg Ala Ala Arg Leu Ala Lys Glu Ala Lys $85 \hspace{1cm} 90 \hspace{1cm} 95$

Ala Glu Thr Pro Gly Pro Gln Ile Lys Glu Leu Thr Asp Glu Glu Ala

Glu Arg Leu Gln Leu Glu Ile Asp Gln Lys Lys Asp Ala Glu Asn His

Glu Val Gln Leu Lys Asn Gly Ser Leu Asp Ser Pro Gly Lys Gln Asp

Ala Glu Glu Glu Asp Glu Glu Asp Glu Lys Asp Lys Gly Lys Leu

Lys Pro Asn Leu Gly Asn Gly Ala Asp Leu Pro Asn Tyr Arg Trp Thr

Gln Thr Leu Ser Glu Leu Asp Leu Ala Val Pro Phe Arg Val Ser Phe

Arg Leu Lys Gly Lys Asp Val Val Val Asp Ile Gln Arg Arg His Leu

Arg Val Gly Leu Lys Gly Gln Ala Pro Val Ile Asp Gly Glu Leu Tyr

Asn Glu Val Lys Val Glu Glu Ser Ser Trp Leu Ile Glu Asp Gly Lys

Val Val Thr Val His Leu Glu Lys Ile Asn Lys Met Glu Trp Trp Asn

Arg Leu Val Thr Ser Asp Pro Glu Ile Asn Thr Lys Lys Ile Asn Pro 265

Glu Lys Met Met Tyr Asp Gln Arg Gln Lys Ser Met Gly Leu Pro Thr Ser Asp Glu Gln Lys Lys Gln Glu Ile Leu Lys Lys Phe Met Asp Gln His Pro Glu Met Asp Phe Ser Lys Ala Lys Phe Asn <210> 14 <211> 198 <212> PRT <213> Aspergillus nidulans <400> 14 Met Ser Glu Gln Glu Pro Ser Ser Ala Asp Leu Ala Ala Arg Glu Ala Glu Glu Lys Gln Arg Lys Ala Ala Glu Glu Ala Glu Gln Ala Thr Leu Pro Tyr Lys Trp Thr Gln Thr Ile Arg Asp Val Asp Val Thr Ile Pro Asp Ser Ile Lys Val Lys Val Lys Gly Glu Asn Gly Glu Val Phe Ile Asp Gly Gln Phe Pro His Pro Ile Lys Pro Ser Glu Ser Ser Trp Thr Leu Glu Thr Thr Ser Lys Pro Pro Gly Lys Glu Val Ser Ile His Leu Asp Lys Val Asn Gln Met Glu Trp Trp Ala His Val Val Thr Thr Ala Pro Lys Ile Asp Val Ser Lys Ile Thr Pro Glu Asn Ser Ser Leu Ser Asp Leu Asp Gly Glu Thr Arg Ala Met Val Glu Lys Met Met Tyr Asp Gln Arg Gln Lys Glu Met Gly Ala Pro Thr Ser Asp Glu Gln Arg Lys

Met Asp Ile Leu Lys Lys Phe Gln Lys Glu His Pro Glu Met Asp Phe 180 185 190

Glu Asn Ser Lys Leu Ser Asp Leu Asp Ser Glu Thr Arg Ser Met Val

195 <210> 15 <211> 93 <212> PRT <213> artificial Sequence <220> <223> Consensus Sequence <400> 15 Ser Phe Asp Glu Lys Glu Ala Leu Pro Tyr Asn Thr Gln Thr Asp Val Leu Lys Gly Asp Val Val Lys Ile Asp Gly Lys Glu Ser Ser Trp Glu Gly Lys Val His Leu Lys Asn Met Glu Trp Trp Val Pro Ile Lys Ile Pro Glu Asn Ser Leu Ser Asp Leu Asp Glu Thr Arg Met Tyr Glu Lys Met Met Tyr Asp Gln Arg Gln Lys Met Gly Pro Thr Ser Asp Glu Gln Lys Ile Leu Lys Lys Phe His Phe Glu Met Asp Phe Ser <210> 16 <211> 12 <212> PRT <213> Homo sapiens <220> <221> misc_feature <222> (9)..(9) <223> X=Any Amino Acid <220> <221> misc_feature <222> (11)..(11) <223> X=Any Amino Acid <400> 16 Met Val Glu Lys Met Met Tyr Asp Xaa Arg Xaa Lys

Ser Asn Ala Lys Ile Gly